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FINITE-ELEMENT MODELS FOR CALCULATING THE 

TEMPERATURE FIELDS OF UNDERGROUND PIPELINES 

A. N. Khomchenko UDC 532.542:624.139 

A simple method of constructing finite elements for the numerical modeling of tem- 
perature fields of underground pipelines is outlined. 

In the practical design of mains pipelines, problems of temperature-field calculation 
are of particular interest [I]. Variations in the temperature conditions of the pipeline 
and the surrounding material exert an influence on the stress--strain state of the tube and 
cause settling of the earth, which leads to stability loss of the pipeline and other unde- 
sirable consequences [2]. Recently, there has been a trend to more completely taking account 
of the whole set of real conditions of pipeline use. In connection with this, there has been 
a significant increase in the role of numerical methods of calculation with the use of a com- 
puter. The most flexible and universal method is the finite-element method (FEM), which 
presently occupies the central position in engineering calculations [3]. FEM allows the ther- 
mal interaction of the pipeline with surrounding material of inhomogeneous structure to be 
analyzed [4], and allows the influence of imperfections and damage in the insulation and 
other anomalies in the thermophysical characteristics to be taken into account. 

The present work outlines a simplified method of constructing finite elements (FE), 
taking account of the geometry of the problem and allowing errors of boundary approximation 
to be eliminated. In this case, plane FE in polar coordinates (Fig. i) and three-dimensional 
FE in cylindrical coordinates (Fig. 2) are most appropriate. 

Constructing an interpolational polynomial for the FE entails selecting an appropriate 
system of finite basis functions. The temperature values T i at corners of the FE are taken 
as the interpolation parameters. The problem reduces to constructing the coordinate func- 
tions ~i- Usually [3], this problem involves investigating a system of linear algebraic 
equations, the order of which is equal to the number of degrees of freedom of the FE. Sol- 
ving such systems by means of matrix algebra entails laborious transformations and well- 
known ealculational difficulties. 

A simple and expedient method of geometric formalization of the FE basis is now written 
[5], generalizing the probability concept of baricentric coordinates of simplex models. Pro- 
bability identification of the basis significantly simplifies the procedure for constructing 
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Curvilinear FE in polar coordinates. 

Three-dimensional FE in cylindrical coordin- 

various FE models in one-, two-, and three-dimensional problems. As an example, the con- 
struction of a basis function corresponding to point 1 of a plane FE is demonstrated (Fig. 
i). The current point M(p, 0) is chosen on the element. Point 1 is positioned in accor- 
dance with the opposite region bounded by coordinate lines including the point M (this 
region is shaded in Fig. i). To write ~i, it is now sufficient to find the probability that 
a random point will fall in the shaded region. An analogous method of calculating geometric 
probabilities is used for three-dimensional models (Fig. 2). If the third coordinate is nor- 
malized (--I~I) , the basis functions of the three-dimensional FE take the form 

d) I -  P/Pl--Po 02 - -0  1 - - ~ ,  
1 - -  Po 0 o 2 

cD2 : P I p 1 - - 1  02- -0  1 - - ~ ,  
P o -  1 Oo 2 

P/Px--1 0 - - 0  x 1 - -  

po--1  oo 2 

r P/Pl--Po 0 - -0~  ! - - ~ ,  
1 - -  Po Oo 2 (1) 

where po = P2/pl; 0o = 02 -- e~. 

To obtain ~i at the points 5, 6, 7, 8 of the upper face of the FE, it is sufficient to 
reverse the sign of E in Eq. (i). The interpolational formula for the temperature at the 
element is written in the form 

8 8 

T 
i=l ~=I 

When ~ = --i, the basis of the plane FE in polar coordinates is obtained from Eq. (i) (Fig. 
i). 

The interpolational quality of the models constructed is well illustrated by a simple 
test of the steady point-by-point distribution of the heat of the internal source generated 
in the element. For example, calculations for a three-dimensional element with the geometric 
characteristics l~p/p1~2, 0~0~/2,--I~I show that the heat distributed over the 
points is nonuniform, as would be expected. Points i, 4, 5, 8 on the internal cylindrical 
surface of the FE each reproduce 11/72 of the heat, while points 2, 3, 6, 7 account for 17/ 
72 of the heat. 
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Note, in conclusion, that the geometric method of constructing the FE basis, distin- 
guished by simplicity and universality, is especially effective in modeling elements of 
higher orders of approximation. 

NOTATION 

T, temperature; Ti, nodal temperature values; %i, basis functions of the finite element; 
p, e, ~, cylindrical coordinates. 
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SOLVING NONSTEADY HEAT-CONDUCTION PROBLEMS FOR 

MULTILAYER SYSTEMS BY THE FINITE-DIFFERENCE METHOD 

E. M. Glazunov and G. N. Pikina UDC 518.61:536.248 

The problem of heat propagation in a multilayer system with intrinsic heat libera- 
tion of any subsystem depending on the temperature, coordinates, and time is con- 
sidered. 

The construction of concrete housings of underground structures in various climatic 
conditions requires optimization of the temperature conditions of concreting. In practice, 
temperature regulation is accomplished either by producing definite conditions of concrete 
heating in the jacket (thermal-heating method) or by heating the housing by means of insula- 
tional materials in contact with air (thermos method). Theoretical analysis of the choice 
of parameters of the optimal conditions reduces to solving the problem of nonsteady heat 
conduction in a multilayer system. 

Suppose that, within the limits of each subsystem, the thermophysical characteristics 
are constants and the heat liberation of any subsystem may be represented by a specified 
function of the temperature, time, and coordinates Q = Q(U, r, t). Then heat propagation 
in the system may be described by the following nonlinear equation of nonsteady heat conduc- 
tion for the one-dimensional case in cylindrical coordinates 

r OQ =~ r -  ar r . < r  (1 )  
c~ cgt 8l dr ' rL ~ re 

with initial condition 

U(r, 0)= ~(r), r n ~ r ~ r r e  

and boundary conditions of the first kind 

(2) 
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